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Abstract
A typestate specification indicates which behaviors of an object are permitted in each of the
object’s states. In the general case, soundly checking a typestate specification requires precise
information about aliasing (i.e., an alias or pointer analysis), which is computationally expensive.
This requirement has hindered the adoption of sound typestate analyses in practice.

This paper identifies accumulation typestate specifications, which are the subset of typestate
specifications that can be soundly checked without any information about aliasing. An accumulation
typestate specification can be checked instead by an accumulation analysis: a simple, fast dataflow
analysis that conservatively approximates the operations that have been performed on an object.

This paper formalizes the notions of accumulation analysis and accumulation typestate specifica-
tion. It proves that accumulation typestate specifications are exactly those typestate specifications
that can be checked soundly without aliasing information. Further, 41% of the typestate specifications
that appear in the research literature are accumulation typestate specifications.
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1 Introduction

A typestate specification [58] associates a finite-state machine (FSM) with program values of
a given type. As a value transitions through the states of the FSM, different operations are
enabled or disabled; that is, the FSM encodes a behavioral specification for the type.

A typestate analysis checks that a program follows a typestate specification – that is,
the program does not attempt to perform a disabled operation. Typestate analyses are well-
studied in the literature, and have been deployed for many purposes, including enforcing a
locking discipline [28, 17], verification of Windows device drivers [12], and preventing security
vulnerabilities [50]. However, sound typestate analyses – those with no false negatives – are
rarely deployed in practice; for example, a recent paper [21] describing how AWS has deployed
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10:2 Accumulation Analysis
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Figure 1 The typestate automaton for a File object that can be re-opened after being closed.
This typestate specification is not an accumulation typestate system: soundly enforcing it statically
requires an alias analysis.

a typestate-based analysis at cloud-scale explicitly omits soundness as a goal. However,
building a sound analysis is an important goal: without a soundness guarantee, an analysis
might find some bugs, but could not guarantee that no more bugs remain.

A key barrier to sound typestate analyses is the need to reason about aliasing. Consider
the classic example [28, 70, 59, 25, 29, 62, 67, 57, 69, 66, 1, 49, 16, 38, 2, 15, 72, 19, 20] of a
File object, whose typestate is specified in Figure 1, and the following program in a Java-like
imperative language:

1 File f = new File (...);
2 f.open ();
3 File g = f; // f and g are aliases after this line is executed
4 g.close ();
5 f.read (); // an error occurs when this line is executed

On line 3, the shared object – which both aliases f and g refer to – is in the open typestate.
When g.close() is called on line 4, the state of the underlying object transitions to the
closed state. It is therefore an error when f.read() is called on line 5. However, if a static
typestate analysis analyzing this program does not consider that f and g are aliased, then the
analysis’s estimate of f’s typestate does not transition to the closed state, and the analysis
unsoundly concludes that the call on line 5 is safe – that is, the analysis suffers from a false
negative.

For a sound typestate analysis, there are two high-level approaches to handling aliasing:
restrict how the programmer creates aliases (e.g., via ownership types [14, 55] or access
permissions [7]), or use a sound inter-procedural may-alias analysis that conservatively over-
approximates which program variables might be aliases. In practical imperative programming
languages with unrestricted aliasing, inter-procedural may-alias analysis is NP-hard [41], and
scaling alias analysis to real programs while maintaining acceptable precision remains an
open research problem. State-of-the-art analyses often run for an hour or more on practical
programs [60].

In recent work [35, 37], we proposed bespoke accumulation analyses that soundly and
modularly solve specific problems traditionally addressed with typestate. An accumulation
analysis collects operations – corresponding to typestate transitions – that have definitely
occurred on a given program expression. For example, an accumulation analysis could check
the property “before calling read() on a File, call open().” The accumulation analysis would
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record on which expressions open() had definitely been called, and forbid calls to read()
that did not occur via such expressions. Note that this is a weaker property than the full
specification in Figure 1 – it does not forbid “read after close” defects.

Unlike a traditional typestate analysis, an accumulation analysis is sound without any
aliasing information. This means that checking a specification with an accumulation analysis
is cheaper – often by an order of magnitude or more – than checking that same specification
with a general-purpose typestate analysis. Further, effective incremental analysis – i.e.,
modularity – is possible for an accumulation analysis, because no whole-program alias
analysis is needed. Practical accumulation analyses do use limited, cheap, local aliasing
information to improve precision; see Section 5.1. A practical accumulation analysis using
limited aliasing information is sound because no aliasing information at all is required for
soundness.

Our prior work argued informally that our accumulation analyses are sound, despite
their lack of alias reasoning, due to the monotonicity of the particular typestate properties
being checked. However, we neither formalized our arguments nor generalized our arguments
beyond the specific problems that we targeted. Though our prior work has demonstrated
good empirical results – running quickly and finding many real bugs – its soundness claim
relies on accumulation analyses being sound without any aliasing information.

The primary goals of this paper are to prove that accumulation analysis does not require
aliasing information, to demarcate exactly those typestate specifications that can be soundly
checked via an accumulation analysis, and to explore how common such specifications are.
Our hope is that analysis designers facing typestate-like problems in the future can use our
work to determine whether the property they are interested in is an accumulation property,
and hence could be verified without resorting to an expensive, whole-program alias analysis.

Our contributions are:
a formal definition of an accumulation analysis (Section 3.1);
a formal definition of an accumulation typestate system, and a proof that the properties
checkable via accumulation analysis are all accumulation typestate properties (Section 3.2);
a proof that a typestate system can be checked soundly by a typestate analysis that does
no aliasing reasoning if and only if it is an accumulation typestate system (Section 3.3);
a literature survey of work on typestate analysis, from which we collected 1,355 typestate
specifications and determined that 41% of them are accumulation typestate specifications
(Section 4); and
a discussion of the practical issues related to implementing a useful accumulation analysis,
and an implementation of a generic accumulation analysis (Section 5).

2 Background: What Is Typestate?

In a standard type system, the type of an expression is immutable throughout the program
and the set of operations available on the expression is correspondingly immutable. However,
type systems fail to capture the behavioral specifications of many real-world objects that
change over time. For example, a chess pawn might become a queen and gain new movement
operations, a caterpillar might become a chrysalis and lose the ability to crawl before
eventually becoming a butterfly and gaining the ability to fly, or a File might be opened and
gain the ability to be read. In each of these examples, the logical identity of the object stays
the same, but its state – and what that state enables it to do – changes. Typestate [58] extends
types to account for possible state changes by encoding the various states and behaviors of a
type as a finite-state machine – the typestate automaton for that type. Formally:

ECOOP 2022



10:4 Accumulation Analysis

▶ Definition 1. A typestate automaton A = (Σ, S, s0, δ, e) for type τ is a finite-state
machine. The language Σ is the set of operations, such as method calls, that can be performed
on τ . The states S are called typestates; s0 ∈ S is the initial state. The edges defined by the
transition table δ are called transitions and correspond to the effect of operations. There is a
distinguished error state e ∈ S. Each typestate has k = |Σ| outgoing transitions; none, some,
or all of these transitions may be to the error state e or may be self-loops. The error state e

has only self-loops – that is, the error state is a trap state.

At every step during the execution of a program, each value/object of type τ is in one of
the typestates of the typestate system.

▶ Definition 2. An operation is an event that may cause an object to change state. Every
type has a set of operations that can be performed on it, but not all operations are necessarily
legal in all states. Traditionally, operations are method calls. However, they can be generalized
to include any other event, such as assigning a field or a reference going out of scope.

Without loss of generality, we represent typestate automata as having no distinguished
accepting states (or, equivalently, all non-error states are accepting). If a typestate automaton
were to have one or more accepting states, we could transform it to have no accepting states
but encode the same behavioral specification in the following way: add a “go out of scope”
transition to each typestate; in accepting states (and the error state), this is a self-loop
transition, but in non-accepting states, this is a transition to the error state.

▶ Definition 3. A typestate system is the pair of a typestate automaton and the corres-
ponding type τ whose safe usage it encodes.

As an example of a typestate system, Figure 1 shows the automaton, and the type is File.
Note how each edge is labeled with the corresponding operation. A double circle around the
state represents the distinguished error state e. We always draw all transitions, with the
exception of those from the error state (which are, by definition, always self-loops).

This paper considers only static typestate analyses. Dynamic run-time monitoring to
detect typestate violations exists, but a run-time monitor – like any dynamic analysis – cannot
prevent errors before they happen. See Section 6 for more details on related techniques that
are outside the scope of the present work.

3 Definitions and Proofs

This section has three goals. First, Section 3.1 formally defines accumulation analysis in a
way that is consistent with prior work. Second, Section 3.2 defines an accumulation typestate
system and shows that every accumulation analysis has a corresponding accumulation
typestate system. Finally, Section 3.3 proves that accumulation typestate systems are exactly
those typestate systems that can be soundly checked by a static typestate analysis with no
aliasing information – that is, a typestate-like analysis that assumes that no aliasing occurs
in the program.

3.1 Accumulation Analysis
First, we formalize the notion of an accumulation analysis, as used in prior work [35, 37]:1

1 Our definition is consistent with but not identical to the definitions used in prior work. See Section 6.1.
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▶ Definition 4. An accumulation analysis is a static program analysis that approximates,
for each in-scope expression x of type τ at each program point, a set of operations S that
have definitely occurred on the value to which x refers.

An accumulation analysis has one or more goals. A goal is a pair ⟨g, E⟩ where g is the
goal operation and E is a set of enabling operations.

Informally, an accumulation analysis enforces that a goal operation g does not occur until
after every enabling operation e ∈ E for g has already occurred.

An operation in an accumulation analysis is defined identically to an operation in a
typestate automaton (Definition 2).

▶ Definition 5. A sound accumulation analysis must issue an error if some goal operation
may occur before its enabling operations. More formally, it must issue an error if, for some
expression x of type τ and some operation g, both of the following are true:
1. There exists at least one goal ⟨g, _⟩ – that is, g is a goal operation.
2. There exists an execution of the program where the set of operations S that have actually

occurred on the value of x before an occurrence of g on x is not a superset of one of the
enabling sets for g. That is, where there does not exist some goal ⟨g, E⟩ such that S ⊇ E.

Intuitively, a sound accumulation analysis is “accumulating” enabling operations, and
once everything in the enabling set is accumulated, there is no way to “disable” the goal
operation. For example, if g is a goal operation for some goal ⟨g, E⟩, an object must first
perform some set of operations to make g legal (i.e., the operations in E), and once g becomes
legal, it stays legal.

Note that soundness, as in Definition 5, only precludes false negative warnings. It says
nothing about whether the accumulation analysis might issue a false positive, and a trivially-
sound “accumulation analysis” could simply issue an error any time a goal operation might
be executed. In practice, a useful accumulation analysis tracks whether the transitions in an
enabling set have occurred, and it permits the goal operation if they have.

Note that if an accumulation analysis has multiple goals, their goal operations may or
may not be the same. Multiple goals with the same goal operation are useful to express
disjunctive specifications. For example, prior work [35] used the disjunctive specification
“call either withOwners() or withImageIds() before calling describeImages().”

3.2 Relationship Between Typestate and Accumulation
Next, we need to describe the relationship between a typestate system and an accumulation
analysis. As an aid to doing so, we introduce the following:

▶ Definition 6. An error-inducing sequence in a typestate automaton T is a sequence
of transitions S = t1, . . . , ti such that T is in the error state after all transitions in S are
applied (and not before).

▶ Definition 7. An accumulation typestate system is a typestate system such that for
any error-inducing sequence S = t1, . . . , ti, all subsequences (including both contiguous and
non-contiguous subsequences) of S that end in ti also result in the typestate automaton being
in the error typestate. That is, all subsequences of S that end in ti are also error-inducing.

Intuitively, an accumulation typestate system is any typestate system whose error-inducing
paths are closed under subsequence so long as the final error-inducing operation is held
constant. That is, removing operations from the beginning or middle of an error-inducing
sequence always produces another error-inducing sequence.

ECOOP 2022



10:6 Accumulation Analysis

Algorithm 1 A decision procedure for checking whether or not a given typestate automaton T

is an accumulation typestate automaton. The complexity of the algorithm is O(max(n log n, en))
where n is the number of states and e is the number of edges.

1: procedure IsAccumulation(T )
2: // FindErrorInducingTransitions returns all transitions into the error state.
3: U ← FindErrorInducingTransitions(T )
4: // E and Esubseq are finite-state automata. ∀ X, Union(∅, X) = X.
5: E ← ∅
6: Esubseq ← ∅
7: for ui ∈ U do
8: // ErrorInducingAutomatonVia is an automaton that accepts a sequence of
9: // transitions S iff S followed by ui causes an error in the original automaton T .

10: // Its implementation contains two steps: (1) modify T so that states from which
11: // ui is error-inducing are accepting, and then (2) minimize and return the result.
12: Ei ← ErrorInducingAutomatonVia(ui, T )
13: // Subsequences produces the automaton that accepts the subsequence language
14: // for the input automaton, which Higman’s theorem guarantees exists.
15: Esubseq(i) ← Subsequences(Ei)
16: // Concat produces an automaton that accepts iff it receives a sequence
17: // that the input automaton accepts followed by the concatenated transition.
18: E ← Union(E, Concat(Ei, ui))
19: Esubseq ← Union(Esubseq, Concat(Esubseq(i), ui))
20: // AcceptSameLanguage is true iff the two automata accept the same language.
21: return AcceptSameLanguage(E, Esubseq)

Note that a vacuous sound typestate analysis such as “issue an error at every program
statement” is trivially enforcing an accumulation typestate system. The typestate automaton
that such an analysis enforces only has transitions to the error state, so all sequences are
error-inducing.

This definition leads to a decision procedure (Algorithm 1) for determining whether a
given typestate system T is an accumulation typestate system. Consider all error-inducing
operations U = {u1, . . . , un}. The elements of U are the final transitions for every error-
inducing sequence in the automaton of T . For any ui ∈ U , let Ei be the language2 of the
error-inducing sequences of operations in T that end in ui, with the last transition removed
(i.e., the ui transition that leads to the error typestate). Let Esubseq(i) be the language of
subsequences of Ei. Let E =

⋃n
i=1 Ei ∗ ui and Esubseq =

⋃n
i=1 Esubseq(i) ∗ ui. That is, E is

the union of all error-inducing paths in T , and Esubseq is the union of all subsequences of
error-inducing paths in T that end in the same transition as the corresponding error-inducing
path from which they were derived. By Definition 7, if and only if E and Esubseq recognize
the same language, T is an accumulation typestate system.

It is easy to check whether E and Esubseq recognize the same language, because both are
regular. E is regular, because it can be recognized by T ’s automaton, if the error typestate is
converted to an accepting state. Since there are finitely-many operations, any Ei and Esubseq(i)
have a finite alphabet. Higman’s theorem [31] says that the language of the subsequences

2 Throughout, we will abuse notation and refer to both languages and their corresponding language-
recognizers by the same name.
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of any language over a finite-alphabet is regular. Therefore, any Esubseq(i) is also regular.
Esubseq is regular because regular languages are closed under both union and concatenation.
So, the procedure for checking whether a typestate automaton is an accumulation typestate
automaton is as easy as checking whether the two finite state machines for E and Esubseq
recognize the same language.

▶ Theorem 8. Every accumulation analysis has a corresponding accumulation typestate
system.

Proof. Consider some accumulation analysis acc with goals (g1, E1), . . . , (gn, En) over type
τ . The corresponding accumulation typestate system is the pair of the type τ and the
accumulation typestate automaton constructed by the following procedure:
1. Create an error state error with a self-loop transition for each operation on τ .
2. Let PE be the powerset of E, where E =

⋃n
i=1 Ei is the union of the enabling sets

E1, . . . , En. For each element S of PE , create a corresponding state and label it with S.
Note that S refers to both the member of PE and the corresponding state.

3. Make the state that is labeled by the empty set be the start state of the automaton.
4. For each state S ∈ PE and for each transition te ∈ E, add a transition from state S to

state S ∪ {te} labeled te. (This transition might be a self-loop.)
5. Let G = {g1, . . . , gn} be the set of goal transitions. For each element gi of G and for each

state S ∈ PE :
If there exists a goal ⟨gi, Ei⟩ such that Ei ⊆ S,

then add a self-loop transition to S labeled gi if it does not already have a
transition labeled gi. (It might have such a transition if gi is both an enabling
transition and a goal transition.)

Else if such a goal does not exist,
add a transition from S to the error state labeled gi, removing a transition labeled
gi if one already exists.

6. For each operation t on τ such that t /∈ G and t /∈ E – that is, for each operation that is
neither a goal operation nor an enabling operation – add a self-loop transition labeled t

to each non-error state. (Recall that the error state already has self-loop transitions for
each operation, added in step 1.)

The resulting accumulation typestate automaton encodes the same behavior as the original
accumulation analysis. ◀

Note that this construction is a existence proof, not an efficient translation: it does induce
an exponential blowup in the number of states. A practical accumulation analysis does not
track states directly – rather, it tracks only the enabling sets – so state explosion is not a
problem in practice.

3.3 Soundness Without Aliasing
This section proves that accumulation typestate systems are exactly the typestate systems
that are soundly checkable without reasoning about aliasing (i.e., by a typestate analysis
with no aliasing information, which we will formally define in Definition 14):

▶ Theorem 9. A typestate system T = (A, τ) is an accumulation typestate system if and
only if there exists a typestate analysis with no aliasing information that can soundly check T .

The high-level intuition behind the proof of Theorem 9 is the consequence of two facts:

ECOOP 2022



10:8 Accumulation Analysis

without using aliasing information, a typestate analysis observes only a subsequence of
the actual operations that are applied to the object to which some expression refers, and
accumulation typestate automata are exactly those that are error-closed under sub-
sequence, when the last transition is held constant.

The formal proof is split into Lemmas 16 and 17 (which are the forward and backward
directions of the bi-implication respectively), and appears in Section 3.3.2. Section 3.3.1
defines the supporting machinery of the proof: the language, relevant definitions, etc.

Accumulation analyses as defined in Section 3.1 (and therefore as defined in prior
work [35, 37]) are sound without access to aliasing information:

▶ Corollary 10. An accumulation analysis, even without aliasing information, is sound.

Proof. Convert the accumulation analysis to an accumulation typestate system via the
procedure in the proof of Theorem 8. By Theorem 9, the accumulation typestate system can
be soundly checked. ◀

An important consequence of the ability to soundly check an accumulation typestate
system with no aliasing information is that approaches that utilize limited aliasing inform-
ation are also sound. In practice, analyses can compute inexpensive, typically local, alias
information to improve precision (i.e., to avoid issuing false positive warnings); see Section 5.1.

3.3.1 Preliminaries
This section introduces the machinery used to prove Theorem 9.

3.3.1.1 Language

We will prove Theorem 9 over a core calculus that represents a simple imperative programming
language. This language contains the essential parts of a programming language related to
typestate checking and aliasing – method calls, fields, and assignments.

A program P in this language is a statement s of one of the following kinds:
an assignment: xi := xj .
a field load: xi := xj.fk.
a field store: xi.fj := xk.
a method call: xi.mj().
a statement sequence: si ; sj .

Source code variables range from x_1 to x_n, where n is some positive integer. Statements
may only refer to variables in that range. There is a single type T . Each variable refers to a
value – that is, a particular object instance – of type T . We use xi, xj , . . . as metavariables for
arbitrary variables in the range x_1,. . .,x_n. T has methods m_1 to m_k and a corresponding
typestate automaton A whose k operations are exactly the methods m_1 to m_k. A method call
statement can only refer to methods in T . We use mi, mj , . . . as metavariables for arbitrary
methods in T . Each object of type T has fields f_1 to f_m, where m is some positive integer.
Load and store statements may only refer to fields in this range. Each field refers to some
value of type T . We use fi, fj , . . . as metavariables for arbitrary fields in T .

To simplify the presentation and proofs, this language lacks conditionals, loops, method
bodies, return values, etc. – which makes precise alias and typestate analysis trivial. However,
our algorithms are general (they do not take advantage of the straight-line nature of the
code) and can be extended to a richer language without changing the essence of the proof.
Section 5.2 discusses practical concerns when implementing an accumulation analysis for a
real programming language.
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⟨ρ, σ, τ⟩ ⊢ xi := xj ⇓ ⟨ρ[xi 7→ ρ(xj)], σ, τ⟩
ASSIGN

⟨ρ, σ, τ⟩ ⊢ xi := xj .fk ⇓ ⟨ρ[xi 7→ σ(⟨ρ(xj), fk⟩)], σ, τ⟩
LOAD

⟨ρ, σ, τ⟩ ⊢ xi.fj := xk ⇓ ⟨ρ, σ[⟨ρ(xi), fj⟩ 7→ ρ(xk)], τ⟩
STORE

⟨ρ, σ, τ⟩ ⊢ t′ = succ(τ(ρ(xi)), mj , A) t′ ̸= error

⟨ρ, σ, τ⟩ ⊢ xi.mj() ⇓ ⟨ρ, σ, τ [ρ(xi) 7→ t′]⟩
CALL

⟨ρ, σ, τ⟩ ⊢ si ⇓ ⟨ρ′, σ′, τ ′⟩ ⟨ρ′, σ′, τ ′⟩ ⊢ sj ⇓ ⟨ρ′′, σ′′, τ ′′⟩
⟨ρ, σ, τ⟩ ⊢ si; sj ⇓ ⟨ρ′′, σ′′, τ ′′⟩

SEQ

Figure 2 The big-step dynamic semantics of the language expressed as inference rules. The
notation µ[x 7→ y] means that the map µ is updated so that x maps to y. M ⊢ s ⇓ M ′ means that
executing statement s in machine-state M results in machine-state M ′.

3.3.1.2 Dynamic Semantics

To execute a program, we maintain a machine state ⟨ρ, σ, τ⟩ composed of an environment
(ρ) mapping each variable to a value of type T , a store (σ) mapping each value–field pair
to a value, and a typestate store (τ) mapping each value to a typestate in A. The initial
environment maps each xi to a distinct value vj . The initial store maps each value–field
pair ⟨vi, fj⟩ to a distinct value vk. The initial typestate store maps each value vi to the
start typestate s0 of A.3 Executing a statement in machine state ⟨ρ, σ, τ⟩ either produces
an updated machine state ⟨ρ′, σ′, τ ′⟩, or it terminates the program in an error if any value’s
entry in the typestate store would be A’s error typestate. The dynamic semantics (Figure 2)
are as follows:

For an assignment xi := xj , produce a new machine state with an updated environment:
ρ′(xi) = ρ(xj) (rule ASSIGN).
For a field load xi := xj.fk, produce a new machine state with an updated environment:
ρ′(xi) = σ(ρ(xj), fk) (rule LOAD).
For a field store xi.fj := xk, produce a new machine state with an updated store:
σ′(ρ(xi), fj) = ρ(xk) (rule STORE).
For a call xi.mj(), let t′ = succ(τ(ρ(xi)), mj , A). That is, t′ is the successor typestate in
A when transition mj occurs in the current typestate of the value that xi is a reference to.
If t′ is not the error typestate, produce a new machine state with an updated typestate
store: τ ′(ρ′(xi)) = t′ (rule CALL). If t′ is the error typestate, the semantics “get stuck”
and the program terminates in an error.
For a sequence si ; sj , first execute si. If the program terminates in an error while
executing si, the semantics for the sequence statement “get stuck.” Otherwise, let
⟨ρ′, σ′, τ ′⟩ be the machine state after executing si. Execute sj in ⟨ρ′, σ′, τ ′⟩ (rule SEQ).

3 Initializing all variables before a program starts simplifies the language by removing the need for a new
expression.

ECOOP 2022



10:10 Accumulation Analysis

3.3.1.3 Sound Typestate Analysis

▶ Definition 11. A typestate analysis is a static program analysis. Its inputs are a program
P and a typestate system T = (A, τ). It reports call statements within P that may cause the
program to terminate in an error when running P .

▶ Definition 12. A typestate analysis is sound if it reports each call statement that causes
the program to terminate in an error at run time in any execution of the program.

3.3.1.4 Representation of Aliasing

Suppose that a typestate analysis has access to two oracle functions MustOracle(xi, s) and
MayOracle(xi, s) for aliasing information. Each oracle takes a variable xi and a program
statement s and returns a list of names – variables or arbitrarily-nested field load expressions
– that the input variable must (respectively, may) alias before the given statement.

MustOracle returns a list of names that definitely do alias xi at s. More formally, for
a sound oracle, if the list returned by MustOracle(xi, s) contains xj , then xi and xj are
definitely aliased before statement s on all executions. If the list does not contain xj , then
xi and xj may or may not be aliased before s. A trivial MustOracle that always returns an
empty list is sound.

MayOracle returns a list of names that might or might not alias xi at s. More formally,
for a sound oracle, if the list returned by MayOracle(xi, s) does not contain xj , then xi and
xj are definitely not aliased before statement s on all executions. If the list does contain xj ,
then xi and xj may or may not be aliased before s. A trivial MayOracle that always returns
every in-scope name in the program is sound.

These oracles can represent an external alias analysis, an on-demand alias analysis,
aliasing tracking built into the typestate analysis, etc. If the oracles are sound, then for
all xi and s, MustOracle(xi, s) ⊆ MayOracle(xi, s). For a traditional typestate analysis (as
defined in section 3.3.1.5) to be sound for an arbitrary typestate system such as the File
example in Figure 1, both oracles must be sound.4

3.3.1.5 Definition of Typestate Analysis

A typestate analysis is a fixpoint analysis that can be viewed as a dataflow analysis or an
abstract interpretation. It operates by maintaining a set of abstract stores, one for each
program point. An abstract store is a map from names to sets of estimated typestates. We
write ϕs(xi) for the estimated typestates of name xi before program statement s, and ϕ′

s(xi)
for those after. For any sequencing statement r;s, for all xi, ϕ′

r(xi) = ϕs(xi). The notation
ϕ̂s(xi.∗) means all names in ϕs that begin with xi.

At the beginning of the analysis, at every program point, the abstract store maps all
names5 to the set containing only the start state s0 of the typestate automaton A. Then, the
analysis processes each statement s using the following rules (which also appear in Figure 3)
until the set of abstract stores reaches a fixpoint:

4 For the language of section 3.3.1.1, it is trivial to construct a sound alias analysis that never includes
a name in the result of a MayOracle query unless the corresponding MustOracle query would also
include that name. In a richer programming language, the MayOracle is necessary to handle analysis
imprecision and control flow joins.

5 An analysis may use widening, abstraction, or iterative expansion of maps to handle the fact that the
set of names is infinite.
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ϕs ⊢ ∀n ∈ ϕ̂s(xi.∗), n′ = n[xj/xi] ∧ T ′
n′ = ϕs(n′)

ϕ′
s = ϕs[∀n ∈ ϕ̂s(xi.∗), n 7→ T ′

n′ ]
ϕs ⊢ xi := xj ⇓ ϕ′

s

TS-ASSIGN

ϕs ⊢ ∀n ∈ ϕ̂s(xi.∗), n′ = n[xj .fk/xi] ∧ T ′
n′ = ϕs(n′)

ϕ′
s = ϕs[∀n ∈ ϕ̂s(xi.∗), n 7→ T ′

n′ ]
ϕs ⊢ xi := xj .fk ⇓ ϕ′

s

TS-LOAD

ϕs ⊢ ∀n ∈ ϕ̂s(xi.fj .∗), n′ = n[xk/xi.fj ] ∧ T ′
n′ = ϕs(n′)∧

Amust
n = MustOracle(n, s) ∧Amay

n = MayOracle(n, s)
ϕ′

s = ϕs[∀n ∈ ϕ̂s(xi.fj .∗), n 7→ T ′
n′ ][∀an ∈ Amust

n , an 7→ T ′
n′ ]

[∀bn ∈ Amay
n −Amust

n , bn 7→ T ′
n′ ∪ ϕs(bn)]

ϕs ⊢ xi.fj := xk ⇓ ϕ′
s

TS-STORE

ϕs ⊢ T = ϕs(xi) T ′ =
⋃

t∈T
succ(t, mj , A)

Amust = MustOracle(xi, s) Amay = MayOracle(xi, s)
ϕ′

s = ϕs[xi 7→ T ′][∀a ∈ Amust , a 7→ T ′][∀b ∈ Amay −Amust , b 7→ T ′ ∪ ϕs(b)]
ϕs ⊢ xi.mj() ⇓ ϕ′

s

TS-CALL

ϕs ⊢ si ⇓ ϕ′
si

ϕ′
si

= ϕsj
ϕsj
⊢ sj ⇓ ϕ′

s

ϕs ⊢ si; sj ⇓ ϕ′
s

TS-SEQ

Figure 3 Inference rules for a traditional, sound typestate analysis. Each rule applies to some
statement s, which appears in the consequent. The notation x[y/z] means “x with each z replaced
by y.” The notation ϕ̂s(xi.∗) means all names in ϕs that begin with xi.

For an assignment xi := xj , for each n ∈ ϕ̂s(xi.∗), let n′ = n[xj/xi] – that is, n′ is n with
its xi replaced by xj – and let T ′

n′ = ϕs(n′), the abstract value of n′ in the pre-state. The
analysis updates the abstract store after s so that n is mapped to T ′

n′ : ϕ′
s(n) := T ′

n′ (rule
TS-ASSIGN). For all other names m in ϕs where m /∈ ϕ̂s(xi.∗), the analysis copies the
entry from the previous abstract store: ϕ′

s(m) := ϕs(m).
For a load statement xi := xj.fk, for each n ∈ ϕ̂s(xi.∗), let n′ = n[xj .fk/xi] and let
T ′

n′ = ϕs(n′). The analysis updates the abstract store after s so that n is mapped to T ′
n′ :

ϕ′
s(n) := T ′

n′ (rule TS-LOAD). For all other names m in ϕs where m /∈ ϕ̂s(xi.∗), the
analysis copies the entry from the previous abstract store: ϕ′

s(m) := ϕs(m).
For a store statement xi.fj := xk, for each n ∈ ϕ̂s(xi.fj .∗), let n′ = n[xk/xi.fj ] and let
T ′

n′ = ϕs(n′). Then, for each n and its n′ and T ′
n′ , the analysis performs the following

steps (rule TS-STORE):
1. The analysis updates the abstract store after s so that n is mapped to T ′

n′ : ϕ′
s(n) := T ′

n′ .
2. The analysis queries MustOracle(n, s) (call the result Amust

n ). For each an ∈ Amust
n ,

the analysis performs a strong update to the abstract store: ϕ′
s(an) := T ′

n′ .
3. The analysis queries MayOracle(n, s) (call the result Amay

n ). For each element bn in
Amay

n − Amust
n – that is, variables that may be aliases but are not guaranteed to be

aliases – the analysis performs a weak update to the abstract store so that it maps bn

to T ′
n′ ∪ ϕs(bn): ∀bn ∈ Amay

n −Amust
n , ϕ′

s(bn) := T ′
n′ ∪ ϕs(bn).
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For all other names m in ϕs where m /∈ ϕ̂s(xi.fj .∗) ∧ ∀Amay
n , m /∈ Amay

n , the analysis
copies the entry from the previous abstract store: ϕ′

s(m) := ϕs(m).
For a call statement xi.mj(), let T ′ =

⋃
t∈ϕs(xi). The analysis performs the following

steps (rule TS-CALL):
1. If any t′ ∈ T ′ is error, the analysis reports an error for the statement. Note that while

the dynamic semantics (Figure 2) do not permit any value to be in the error typestate
(the program crashes instead), this analysis approximates the semantics statically.

2. The analysis updates the abstract store so that ϕ′
s(xi) := T ′.

3. The analysis queries MustOracle(xi, s) (call the result Amust). For each a ∈ Amust,
the analysis performs a strong update to the abstract store: ϕ′

s(a) := T ′.
4. The analysis queries MayOracle(xi, s) (call the result Amay). For each b ∈ Amay−Amust ,

the analysis performs a weak update to the abstract store: ϕ′
s(b) := T ′ ∪ ϕs(b).

For a sequence s = si ; sj , the analysis first analyzes si, and then analyzes sj with the
resulting abstract store (rule TS-SEQ)). (Note that the analysis does not terminate in
the case of an error, but keeps reporting errors on subsequent statements.)

This standard formulation of a traditional typestate analysis is sound for any arbitrary
typestate system, as long as its aliasing oracles are sound:

▶ Theorem 13. A traditional typestate analysis is sound if its MustOracle and MayOracle
functions return sound results.

Proof. By co-induction on the dynamic semantics (Figure 2) and the rules for a traditional
typestate analysis (Figure 3). The key invariant is that the actual typestate to which a name
refers on any particular execution at some statement is always in the abstract store. ◀

3.3.1.6 Typestate Analysis with No Aliasing Information

▶ Definition 14. A typestate analysis with no alias information is a typestate analysis
whose MustOracle and MayOracle functions return empty lists for all arguments.

Intuitively, a typestate analysis “with no alias information” assumes that no aliasing
occurs in the program – even when making such an assumption is unsound.

A typestate analysis with no alias information has a simpler method call rule: it never
updates its abstract store in response to an aliasing query, so steps 3 and 4 may be omitted.
Similarly, there is a simpler store rule: only the n ∈ ϕ̂s(xi.fj .∗) need to be updated, because
all MayOracle and MustOracle queries (unsoundly) return false.

Informally, having no aliasing information means that the analysis might not be aware
that one or more transitions have occurred on the value to which some expression refers,
because those operations occurred via an alias. That is, the analysis’s estimate of the
typestate of an expression that actually refers (at run time) to a value v in typestate t is
must include a typestate reachable by a subsequence of the sequence of transitions that
results in τ(v) being t. Stated more formally:

▶ Lemma 15. Let R = ϕs(xi) be the set of estimated typestates produced by a typestate
analysis with no aliasing information for a variable xi before a statement s. Let S be the
trace of an arbitrary execution leading up to some occurrence of s, and let t = τ(ρ(xi)) be
the typestate of the actual value to which xi refers before that occurrence of s. Applying S to
the automaton leads to typestate t. There exists a typestate r ∈ R such that applying some
subsequence of S leads to r. That is, there is some estimated typestate r ∈ R that is reachable
by a subsequence of the transitions that lead to t.
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init b_ok

error

a()

b()

a(), b()

Figure 4 An accumulation typestate automaton for the property “call a() before calling b()”.

ϕs ⊢ ϕ′
s = ϕs[xi 7→ s0]

ϕs ⊢ xi := xj .fk ⇓ ϕ′
s

TS-LOAD-FIX

Figure 5 A modified load rule for a typestate analysis with no aliasing information, which
preserves Lemma 15. s0 is the start state of the automaton A being checked.

Stated another way, Lemma 15 says that for every possible trace S through the program
that reaches s, there is at least one r ∈ R that “corresponds to” S, in the sense that r is
reachable by a subsequence of S.

Lemma 15 is not quite true of a typestate analysis as defined in Figure 3: field loads do
not necessarily preserve it. Because the store rule is unsound due to the unsoundness of the
aliasing oracles, the entry in the abstract store for a given field may not actually be related
to the value to which that name refers, due to possible aliasing. For example, consider the
following program, being analyzed with respect to the “only call b() after a()” typestate
automaton in Figure 4 (note that “Estimated state” and “Actual state” columns only show
entries for names that are relevant to the problem):

Program Estimated state (ϕs)6 Actual state (τ)7

x2 = x1 {x1.f 7→init, x2.f 7→init} {x1.f 7→init, x2.f 7→init}
x3.a() {x1.f 7→init, x2.f 7→init, x3 7→b_ok} {x1.f 7→init, x2.f 7→init, x3 7→b_ok}
x1.f = x3 {x1.f 7→b_ok, x2.f 7→init, x3 7→b_ok} {x1.f 7→b_ok, x2.f 7→init, x3 7→b_ok}
x2.f = x4 {x1.f 7→b_ok, x2.f 7→init} {x1.f 7→init, x2.f 7→init}
x5 = x1.f {x1.f 7→b_ok, x2.f 7→init, x5 7→b_ok} {x1.f 7→init, x2.f 7→init, x5 7→init }
x5.b() {x1.f 7→b_ok, x2.f 7→init, x5 7→b_ok} {x1.f 7→init, x2.f 7→init, x5 7→init }

This program (left side of the table above) leads to Lemma 15 being untrue at the final
statement, because the actual state of x5 (init) is not reachable from the estimated state
(b_ok). The key issue is aliasing: x1 and x2 are aliases, so x1.f and x2.f actually refer to the
same value. When x2.f is re-assigned to x4, the actual value to which x1.f refers changes –
but with no aliasing information, the typestate analysis is unaware, leading to the problem.

Note that this problem applies to arbitrary typestate systems: both accumulation
typestate systems and non-accumulation typestate systems. Lemma 15 discusses both.

6 Entries in ϕs are single-element sets. For simplicity of presentation, set notation has been elided.
7 Keys in τ are values. For simplicity of presentation, the necessary lookups in ρ and σ have been elided.
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There is a simple solution to this problem that makes Lemma 15 hold for a typestate
analysis with no aliasing information: update the load rule so that the analysis assumes
that all loads return a value whose typestate is the start state of the automaton (rule
TS-LOAD-FIX in Figure 5).

This rule trivially preserves Lemma 15 for field loads, and corresponds with how accu-
mulation analyses handle field loads in practice (see Section 5.2). Our proof assumes this
simpler load rule for the typestate analysis with no aliasing information. However, note
that this rule would make a traditional typestate analysis unsound (i.e., this rule makes
Theorem 13 untrue): in an arbitrary typestate analysis, the start state is not necessarily a
safe default assumption. A useful property of accumulation typestate automata, however, is
that every operation which might ever lead to an error on any path must necessarily lead to
an error from the start state – otherwise, the definition of accumulation typestate automaton
could not be met when considering the empty subsequence.

We now prove Lemma 15 (see Appendix A for the full proof):

Proof. By co-induction on the dynamic semantics and the rules for a typestate analysis
with no aliasing information. The interesting cases are method calls, assignments, and loads.
Method calls preserve the inductive invariant via the inductive hypothesis. Assignments
preserve the inductive invariant because the left-hand side’s estimate is updated to the
right-hand side’s estimate, which also preserves the invariant by the inductive hypothesis.
Loads preserve the inductive invariant only because of the modified rule described above,
which says that after a load, the estimate is always the start state, which trivially preserves
the invariant. ◀

3.3.2 Proof of Theorem 9
The proof is split into two parts – the forwards and backwards direction of the bi-implication,
which are Lemmas 16 and 17, respectively.

▶ Lemma 16. T is an accumulation typestate system =⇒ there exists a sound typestate
analysis with no aliasing information that can check T .

Proof. The proof is by contradiction. Suppose that an arbitrary typestate analysis with no
aliasing information (as defined by Definition 14) for an accumulation typestate system T

is unsound. That is, suppose that it fails to issue an error at some method call statement
s = xi.mj(), but the program terminates in an error in some execution e, because τ(ρ(xi))
after s would be error.

Let vi = ρ(xi). That is, xi actually refers to vi at8 s on execution e. mj must be the
transition that would lead vi to enter the error typestate at the call xi.mj(), because the
program would have already terminated if some other transition might have caused vi to
enter the error state before s was reached. Let R′ = ϕ′

s(xi) be the analysis’s estimate of the
possible typestates of xi after the call statement is executed. Because the analysis did not
issue an error at s, R′ must not contain the error typestate.

Since R′ does not contain the error typestate after observing mj , then mj must have
been a legal transition on each typestate in the analysis’ pre-state estimate R = ϕs(xi).
By Lemma 15, there is some typestate r ∈ R that is reachable via some subsequence of
the transitions that led to the actual typestate t = τ(ρ(xi)) that vi was in during e before
transition mj was applied.

8 s must be a method call statement, so vi is the same before and after s.
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The typestate r is reachable by a subsequence of the sequence of transitions that actually
occurred on vi that led it to reach t, but mj is a legal transition in r. This is a contradiction:
mj must be both an error-inducing and a legal transition in r. mj must be an error-inducing
transition in r by the definition of an accumulation typestate system (Definition 7): mj must
be an error-inducing transition in typestates reachable via subsequences of the transitions
that lead to t, including r. But, mj must also be a legal transition in r because the analysis
did not issue an error when its estimate included r. Since one transition cannot be both
error-inducing and legal, by contradiction, the analysis must have been sound. ◀

▶ Lemma 17. T is an accumulation typestate system ⇐= there exists a sound typestate
analysis with no aliasing information that can check T .

Proof. The proof is by contradiction. Suppose that there is a typestate analysis with no
aliasing information that can soundly check a typestate system T that is not an accumulation
typestate system. Since T is not an accumulation typestate system, there exists some
sequence of transitions S = t1, . . . , ti that ends in an error typestate that has a subsequence
S′ that ends in ti that does not end in an error typestate. Let D be the difference between
S′ and S: the sequence of transitions that appear in S but do not appear in S′.

Construct a program P with two variables xS′ and xD. The first statement in P is xD

:= xS′ , which aliases these expressions. Then augment the program in the following manner:
for each transition t ∈ S, if t is an element of S′, then add the statement xS′ .t() to P .
Otherwise, add the statement xD.t() to P .

Because xS′ and xD were aliased by P ’s first statement, we know that they both point
to a single value v to which every transition in S has been applied by the end of P ; thus, P

terminates in an error when the final transition ti is applied. However, no error is issued:
the analysis will not issue an error for xS′ .ti(), which is the program statement that causes
the error, because the sequence R that was applied to xS′ is a legal sequence of transitions
(and the error-inducing transition ti is guaranteed to be in S′, not in D, by definition).
This is a contradiction of our original premise that a typestate analysis with no aliasing
information could soundly check T : an error-inducing transition (ti) occurs, but the analysis
with no aliasing information fails to issue an error. Thus, T must have been an accumulation
typestate system. ◀

3.4 Discussion: Accumulating Sets vs. Accumulating Subsequences
Section 3 uses the term “accumulation” to refer to two subtly different things. Accumula-
tion analyses (Definition 4) compute sets of operations. Accumulation typestate systems
(Definition 7) are defined by (sub)sequences of operations.

Definition 4 of accumulation analysis uses sets because that is how accumulation analysis
is defined and implemented in prior work [35, 37]. For an alternate definition of accumulation
analysis in terms of subsequences, each goal operation would have an enabling sequence
rather than an enabling set. Implementing an accumulation analysis based on this alternate
definition would allow us to check “accumulation-like” properties that cannot be expressed
as sets. For example, such an analysis could soundly check a property such as “call a() at
least twice before calling b()” (i.e., a goal transition enabled by counting) or a property such
as “call a() and b(), in that order, before calling c()” (i.e., a goal transition enabled by
ordering). This generalization of the concept of accumulation from the specific accumulation
analyses used in prior work is one of our contributions.

In our literature survey (Section 4), we found three specifications with a goal transition
enabled by ordering, but we did not find any enabled by counting. For example, in Figure 12
of [56], the authors describe a mined typestate specification for the Java KeyAgreement
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API. This API contains a method generateSecret(). Calling generateSecret() before init()
and doPhase() is an error, so generateSecret() is a goal transition. However, init() and
doPhase() also must be ordered: calling doPhase() before init() is also an error. The other
two specifications in the literature (which appear in [56, 22]) that rely on ordering had a
similar character to this example: describing some multi-stage initialization property where
the initialization steps must be performed in some specific order.

4 Literature Survey

This section aims to answer the research question: RQ1: What fraction of typestate
problems can be solved modularly with an accumulation analysis?

We will approximate the answer by using the population of typestate problems that
appear in the scientific literature. Note that this is likely to be an under-approximation of
incidence in practice, because scientific papers usually address the most complex problems.

We performed a literature survey of papers in the research literature since 2000 that
contain typestate specifications. We chose the year 2000 because a similar survey [18], which
we discuss in section 4.2.2.1, was published in 1999. For each typestate specification that
we discovered, we used the decision procedure in Algorithm 1 to determine whether the
specification was an accumulation typestate system – and therefore soundly analyzable without
any aliasing information by Theorem 9. The vast majority of the papers that we analyzed
use typestate for some small number of examples. We report on these papers in aggregate
and describe specific, common examples (Section 4.2.1). There are two outliers [18, 4] that
reported on categories containing hundreds of specifications, which we discuss in detail
(Section 4.2.2).

The remainder of this section details our methodology, discusses the results, and gives
examples of specifications that can and cannot be checked via accumulation.

4.1 Methodology
We searched Google Scholar for papers since 2000 whose full-text includes “typestate”,
resulting in 1,760 hits. (We originally included “type-state” and “type state” as search terms,
but discovered no computer science results in the first 100 hits for each that “typestate” did
not also return.) We discarded any paper that was not published in the research track of a
reputable computer science conference or journal or was duplicative with another paper in the
dataset (e.g., for work with both a conference paper and a journal extension, we only included
the journal extension), resulting in a set of 187 papers. The authors are familiar with the
relevant conferences and journals in programming languages and software engineering, and
we used our judgment for these, erring on the side of inclusivity. For conferences or journals
outside PL and SE, we included papers in any venue with a CORE ranking of A or A*.

We then examined each of the remaining papers in detail and recorded how many typestate
specifications they contained, which specifications those were, and which of the specifications
were accumulation typestate systems. When recording which specifications occurred in
each paper we examined, we also recorded whether the specifications were duplicates of
specifications that appeared in other papers. Among the papers we examined, 102 (≈ 55% of
those examined closely, and ≈ 6% of all Google Scholar hits) contained one or more typestate
specifications. The venues that contributed papers with one or more typestate specifications
to this study are: ECOOP (12), ESEC/FSE (12), ICSE (12), OOPSLA (10), PLDI (8),
ISSTA (7), ASE (6), POPL (5), CCS (4), SAS (4), TOSEM (4), TSE (4), CC (2), ASPLOS
(1), CAV (1), EuroSys (1), ICPC (1), IWACO (1), SAC (1), SOSP (1), TOPLAS (1), VMCAI
(1), WWW (1).
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Table 1 The results of the literature survey. “TSA” stands for “TypeState Automata”; “ATSA”
stands for “Accumulation TypeState Automata”. All specification counts are without de-duplication.

Dataset Source TSA ATSA ATSA%
Papers since 2000 with <20 TSAs 101 scientific papers 302 67 22%
Dwyer et al. (1999) [18] 34 papers, tools, students 511 306 60%
Beckman et al. (2011) [4] 4 real Java projects 542 182 34%
Total All of the above 1355 555 41%

4.2 Results
Table 1 summarizes the results. This paper’s artifact9 contains our analysis of each relevant
paper. The artifact also contains a finite-state machine for each typestate problem (as defined
in Section 4.2.1 below) we saw and the list of the papers we saw it in.

4.2.1 Papers Containing Examples
These 101 papers contain 302 specifications, with a mean of 3 and a median of 2.

22% of these specifications are accumulation typestate systems. However, there is a
significant amount of duplication between the papers in this dataset – many papers use the
same few examples of typestate automata to motivate their general work on typestate.

We de-duplicated the typestate automata in these papers by combining instances of
the same automaton into a single typestate problem: for example, we counted every one
of the 19 papers that we observed using the classic File example (Figure 1) as a single
instance of the File typestate problem. Considering problems rather than specifications, we
found that these 101 papers only contain 114 problems. Of those 114, 31 are accumulation
typestate problems (27%), indicating that there is slightly more duplication among the
non-accumulation typestate specifications. Perhaps this is because papers dealing with
general typestate analysis want to motivate their use of an alias analysis – which requires
at least one non-accumulation typestate example. We discuss this discrepancy further in
Section 4.3.

Next, we give the three most common examples of typestate problems that are accumula-
tion and are not accumulation typestate systems.

4.2.1.1 Examples of Typestate Problems That Are Accumulation

The problem of detecting resource leaks (Figure 6) appears 16 times across 14 papers10 [17,
39, 72, 37, 64, 42, 43, 13, 21, 19, 3, 1, 63, 51]. This problem was already known to be
accumulation [37].

The need to call a distinguished initialization method on an object after its constructor
finishes but before using it appears 7 times across 4 papers [24, 17, 57, 69]. For example,
when using a Socket object, one must call connect() before using it to send data (Figure 7).

A third common accumulation problem is that of object initialization: before an object is
fully constructed, all of its logically-required fields must be set to reasonable values (Figure 8).
This pattern appears 6 times across 6 papers [35, 36, 54, 21, 27, 30]. A variant of this problem

9 https://doi.org/10.5281/zenodo.5771196
10We tried to stay as true as possible to the story each paper presented, which is why some automata

appear multiple times in the same paper. The paper treated them differently, but we believe them to
be the same example. For instance, [17] discusses memory leaks and leaked sockets, which are both
resource leaks.
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open closed

error

close()

go out of scope

go out of scope, close()

Figure 6 The typestate automaton for a resource leak, which is an accumulation typestate
problem.

unconn. conn.

error

connect()

send()

send(), connect()

Figure 7 The typestate automaton for connecting a socket before sending data using it, which is
an accumulation typestate problem.

– which arises when using the builder pattern – was known to be accumulation [35]. However,
our literature survey has shown that bespoke analyses for other kinds of object initialization
are also, in effect, bespoke accumulation analyses. For example, masked types [54] are a
type system for ensuring that before a constructor exits, all non-null fields of the constructed
class have been set to non-null values. This type system can be viewed as an accumulation
analysis: the goal transition is the end of the constructor, and the enabling operations are
the setting of the fields.

4.2.1.2 Examples of Typestate Problems That Are Not Accumulation

The most common non-accumulation typestate problem is “don’t read or write to a stream
or file after it is closed” (Figure 9), which appeared 31 times across 17 papers [24, 8, 10, 46,
25, 57, 5, 6, 53, 34, 44, 19, 71, 45, 69, 68, 11]. This problem is related to the file specification
in Figure 1, but is slightly weaker – it assumes that the file is never re-opened. That this
example is not accumulation demonstrates that accumulation typestate automata are a
different category than automata without loops other than self-loops (a category that includes
both this one and the three accumulation typestate examples in section 4.2.1.1).

“Do not update a collection while iterating over it” (Figure 10) appeared 21 times across
14 papers [9, 65, 47, 26, 51, 68, 8, 10, 33, 32, 52, 53, 7, 46]. This property is representative of
an important class of properties that are never accumulation typestate systems: “disable x

after y” properties that forbid the programmer from performing operation x once operation y

has been performed. The key reason that these properties cannot be checked without aliasing
information – and are therefore not accumulation – is that that the “disabling” operation
(“start iterating” in this example) might be performed through any alias, but once it occurs,
“update” must be prevented for all aliases.
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nonenew Builder()

foo

bar

allerror

setFoo()

setBar()

build()

setFoo()

setBar()
build()

setFoo()

setBar()

build()

setFoo(), setBar(),
build()

Figure 8 The typestate automaton for setting the required fields of an object before it is built,
which is an accumulation typestate problem. This instance of the general pattern is specifically for
a builder-pattern-style object construction pattern of a class with two required fields foo and bar.

open closed error
close()

read(),
write()

close()read(), write()

Figure 9 The typestate automaton for not reading or writing a stream after it has been closed,
which is not an accumulation typestate problem.

stop’d it’ing error

start iterating

stop iterating

update

next()update, next()

Figure 10 The typestate automaton for not updating a collection during iteration, which is not
an accumulation typestate problem. Note that this automaton includes operations that are not
method calls (e.g., “start iterating”, which can refer to a while loop, a for loop, a map or filter
operation, etc.).
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The classic full file specification (Figure 1) appeared 20 times across 19 papers [28, 70,
59, 25, 29, 62, 67, 57, 69, 66, 1, 49, 16, 38, 2, 15, 72, 19, 20]. Some parts of this specification
could be enforced with an accumulation analysis if a slightly different design had been chosen
for the API. In particular, if files could not be re-opened once they had been closed, enforcing
“only call close after open” and “only call read after open” would become accumulation
properties. Since most programmers usually create a new File object rather than re-using
an existing one, this restriction would not be particularly burdensome, but would enable
easier analysis.

4.2.2 Papers With Many Typestates
This section discusses two papers that report on large collections of typestate automata.

4.2.2.1 Patterns in Property Specifications for Finite-State Verification

The first paper reports on 555 typestate-like specifications collected from a survey of 34
papers from the scientific literature, verification tool authors, and students in 1999 [18].
These 555 specifications were not de-duplicated. This paper inspired us to conduct the
updated survey in Section 4.2.1. Because it precedes the start date for our survey, it is not
included in the 187 papers in Section 4.2.1. We include its data here for completeness, and
to discuss the differences between their results and ours (Section 4.3).

The primary goal of the paper was to categorize “finite-state properties” – that is, those
expressible as finite-state machines – into patterns to help users of verification tools that take
an FSM as input (such as typestate verifiers) create their own specifications by instantiating
existing patterns. They categorized 511 of the 555 specifications into eight “patterns.” Our
analysis of these patterns is that instances of 5 of the 8 are always accumulation typestate
systems (Existence, Precedence, Chain Precedence, Response, Chain Response), and some
instances of a 6th (Bounded Existence, when the property is “at least” rather than “exactly”
or “at most”) are, as well. The 5 “always accumulation” patterns account for 306 of the 511
specifications that were categorized (60%).

4.2.2.2 An Empirical Study of Object Protocols in the Wild

The second paper [4] studies the object protocols – that is, the behavioral specifications – of
all classes in four large, open-source Java projects (one of which is the Java standard library).
They also categorized these specifications based on common characteristics, much like the
previous study, but they created their own set of categories.

The found 648 object protocols, which were not de-duplicated. We exclude their “type
qualifier” category (106 specifications), which contains classes that behave as one of a fixed
set of subtypes and can never change state. The remaining 542 protocols are typestate
specifications.

Instances of their most common category, Initialization, are always accumulation typestate
specifications. This category contains 182 of the 542 protocols (34%). The other 6 categories
(66%) are not accumulation.

4.3 Discussion
Both of the papers that reported on large sets of typestate properties included larger
proportions of accumulation properties than our literature survey found otherwise. One
possible explanation is that papers on novel analysis techniques tend to include “exciting” or
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“challenging” problems – and, in the case of general typestate analysis, those problems usually
involve aliasing (perhaps to justify the need for an alias analysis when analyzing an arbitrary
typestate system, as we do in Section 1 in reference to Figure 1). Another possible explanation
is that neither of the papers that reported on large sets of specifications de-duplicated their
specifications, so maybe they contain many duplicate accumulation properties. When we
de-duplicated the specifications in Section 4.2.1, we found that non-accumulation typestate
properties tended to be duplicated more often than accumulation typestate properties. This
suggests that our results may be understating the prevalence of accumulation properties. If
our results understate how common accumulation properties are in practice, that is good
news for practitioners interested in applying verification: we have shown that accumulation
properties are easier to check than general typestate properties.

Beckman et al. [4] is the most relevant to practical programmers interested in deploying
accumulation analysis. A promising avenue of future work would be a similar study to
Beckman et al.’s [4] (section 4.2.2.2) on a larger corpus of software combined with automation
of our decision procedure for checking whether a typestate specification is accumulation,
which would permit a more reliable estimate of the percentage of typestate specifications
that appear in practice that are accumulation.

Another observation is the relationship between different typestate specifications of the
same type. For example, three of the examples we gave in Section 4.2.1 are applicable to File
objects: resource leaks (Figure 6), the classic file specification (Figure 1), and reading/writing
a closed file (Figure 9). Enforcing all these properties with a single typestate analysis would
necessarily require alias analysis, but enforcing just the resource leak property does not –
and the same might be true of other partial specifications, such as “only call read after open”
– especially if files cannot be re-opened after being closed. We suspect this may be a reason
why prior work did not identify a category equivalent to accumulation: many accumulation
properties are sub-properties of the full typestate specification of the relevant type. That
said, accumulation properties are often interesting on their own – resource leaks, for example,
are harder to detect dynamically than most other types of misuses of files – and we have
shown that they are easier to enforce statically.

5 Practicality of Accumulation Analysis

We implemented a general accumulation checker for Java using the Checker Framework [48]
and have made it publicly available.11 We have re-implemented the bespoke “accumulation
for the builder pattern” analysis from our prior work [35] on top of it, and our “accumulation
for resource leaks” analysis [37] used the general infrastructure from its inception. An
accumulation analysis could be implemented modularly using any sound program analysis
technique: dataflow analysis, abstract interpretation, type systems, etc. We chose a type
system for convenience, and because types are naturally modular: type annotations on
procedure boundaries and fields act as summaries, and local type inference infers operations
that may have occurred within each procedure. Our implementation tracks enabling sets
rather than enabling sequences (see Section 3.4).

We tested our implementations on the test suites of the bespoke analyses from our prior
work and on the case studies that those papers describe, and found that the implementations
using the common framework produced the expected results. The test suites contain both

11 https://checkerframework.org/manual/#accumulation-checker
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positive examples (i.e., expected errors) and negative examples (i.e., safe code). The test
suites consist of 153 source files comprising 5,452 lines of non-comment, non-blank Java code.
The case studies together comprise 635,006 lines of non-comment, non-blank Java code.

Our prior work also demonstrates the utility and practicality of accumulation analyses
(see Section 6.1). Here are some examples from prior work:

An accumulation analysis for verifying the absence of an initialization-related security
vulnerability had 100% recall (as this paper proves, the accumulation analysis was sound!)
and 82% precision – 16 true bugs vs. 3 false positives – in 9 million non-comment,
non-blank lines of Java code (table 1 of [35]).
An accumulation analysis for verifying the absence of resource leaks had 100% recall and
26% precision on 3 pieces of distributed-systems infrastructure used as a benchmark by
prior work (table 4 of [37]). This compares favorably to the 13% recall and 25% precision
achieved by an unsound heuristic bug-finder and the 7% recall and 50% precision achieved
by a state-of-the-art typestate-based analysis that uses a (very slow) whole-program alias
analysis. This precision might seem disappointing for a bug-finding tool, but we think it
is acceptable for a verification tool – especially for an important and difficult problem
such as resource leaks.

If the low precision of 26% for resource leaks is primarily due to lack of whole-program
alias analysis – that is, if precision is much higher with comprehensive aliasing information –
then there might be little point in running an accumulation analysis: it might be better to
run a slow standard typestate analysis and reduce the human effort to examine false positives.
This is not the case, however. We examined each false positive in [37] to determine its
cause. Even with a hypothetical alias analysis that can reason precisely and flow-sensitively
about the contents of collection data structures like lists or maps (which is known to be
very challenging), the typestate analysis would achieve only 34% precision. A more realistic
state-of-the-art (and still slow) alias analysis would give less than half of that benefit. Proving
the absence of resource leaks is a difficult problem, and aliasing is not the only complication
– other significant causes of false positives included bugs in the underlying analysis platform,
the need to reason about nullness, and the need to reason about boolean logic.

5.1 Aliasing in Practical Accumulation Analyses
A benefit of the accumulation analysis approach is that the core accumulation analysis
(Definition 4) is sound even without any alias reasoning, by Corollary 10. But it is easy
to utilize aliasing information that is readily available (or cheap to compute) to improve
precision. In practice, using some aliasing information is necessary to achieve acceptable
precision, and untracked aliasing is usually the single biggest cause of remaining false positives
even after acceptable precision has been achieved.

Our prior work [35, 37] used cheap, targeted must-alias reasoning to improve the precision
– that is, the false positive rate – of the analyses. For example, section 4.3 of [35] and sections
3–5 of [37] give lightweight aliasing analyses. These lightweight alias analyses compute only
the aliasing information necessary to remove false positives that occurred in practice for
these analyses, which makes them much cheaper than computing precise aliasing information
for all variables (of types with typestate automata) in the program, as a whole-program alias
analysis would.

Our general accumulation checker includes both the suite of built-in cheap sound must-
alias analyses from prior work and hooks for analysis developers to add further aliasing
information.
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5.2 Handling Other Features of Real Programming Languages
The core calculus in section 3.3.1.1 does not model features that are present in a practical
programming language, including unanalyzed dependencies, open programs, class definitions,
conditionals, inheritance, etc. Our formalism already handles some of these: for example,
handling conditionals requires a may-aliasing oracle and estimated sets of typestates rather
than a single typestate, both of which our formalism includes. Extending our proofs to other
features is straightforward and does not require new proof techniques.

An advantage of accumulation analysis is that in practice it is possible to soundly handle
code with unknown or “arbitrarily-bad” effects – including unmodeled features of the target
language – by reverting to a safe default, in the same manner as an abstract interpretation
might “go to top” in the presence of side effects. For example, if a call to an un-analyzed
method might re-assign a field, an accumulation analysis can conservatively assume that
that field’s value is in the typestate automaton’s start state after the call. This is sound
as a consequence of Lemma 15 and the definition of accumulation (in the same manner
as Lemma 16): the start state is necessarily a sound default assumption, because all goal
transitions must be forbidden in it.

By contrast, in a non-accumulation typestate system it is not sound to fall back to the
automaton’s start state. For example, consider the File example in Figure 1: the start state
is closed, where open() is a legal call. But treating all field reads as returning closed files
would not be sound, because if the underlying File value was actually in the open state, a
sound analysis should issue an error for a subsequent call to open().

An advantage of our choice of a pluggable type system to implement our accumulation
analyses is that the “start state” of a field can be changed by changing its declared type to
specify a different typestate. This restricts that field to only contain values whose typestates
are in the states reachable from the declared typestate – that is, the sub-automaton composed
of states reachable from the declared type. For the accumulation analyses we implemented,
we found that this ability to refine a field’s declared type to be sufficient to enable precise
analysis of field reads.

6 Related Work

6.1 Previous Work on Accumulation
Our prior work [35, 37] uses accumulation analyses to solve specific typestate-like problems
(object initialization via the builder pattern and resource leak prevention). One of these [35]
gives an informal relationship between accumulation and typestate: we claimed that a
typestate automaton can be checked with an accumulation analysis if “(1) the order in which
operations are performed does not affect what is subsequently legal, and (2) the accumulation
does not add restrictions; that is, as more operations are performed, more operations become
legal.” We did not substantiate this definition with a proof, and it is not quite equivalent to
the definition of an accumulation typestate system we use in this paper, which does permit
some kinds of ordering properties (see Section 3.4). This paper makes more precise claims
and provides a proof that the analyses are sound (Corollary 10).

6.2 Heap Monotonic Typestates
Heap-monotonic typestates [22] are a class of typestate that, like accumulation typestate
systems, do not require aliasing information for soundness. A heap monotonic typestate
system is one in which the statically observable invariants of the relevant type become
monotonically stronger as an object transitions through its typestates. Every heap-monotonic
typestate system is an accumulation typestate system.

ECOOP 2022



10:24 Accumulation Analysis

The present work goes further than the work on heap-monotonic typestates in three
important ways. First, we have shown exactly which typestate systems (the accumulation
typestate systems) can be checked without aliasing; heap-monotonic typestate systems were
proven to be sound without aliasing information, but not proven to encompass all typestate
systems that can be soundly checked without aliasing. Second, we have surveyed the literature
to locate examples of typestate systems that can be checked soundly without aliasing; the
paper on heap-monotonic typestates gives a few examples, but no procedure for discovering
more. Third, we have implemented practical accumulation analyses: the prior work on
heap-monotonic typestates was, to the best of our knowledge, entirely theoretical.

6.3 Other Categories of Typestate Systems

Others have identified interesting sub-categories of typestate systems that may be amenable
to different kinds of analysis. While as far as we are aware we are the first to identify
the accumulation typestate systems, the omission-closed typestate systems [23] are a close
relative. An omission-closed typestate system is one in which every subsequence of every
valid (i.e., not ending in the error state) path is also a valid path. In other words, omission-
closed properties are those whose valid paths are closed under subsequence. By contrast,
accumulation typestate systems are those whose error-inducing paths are closed under
subsequence, if the last error-inducing transition is held constant. Unlike accumulation
typestate systems, not all omission-closed typestate systems can be checked soundly without
aliasing: for example, the typestate system for a File object whose FSM is defined by the
regular expression “read*;close” is omission-closed, but cannot be checked soundly without
aliasing information, because it is an error to call “close” more than once – or, put another
way, “close” disables itself. Omission-closed typestate properties are of interest because they
can be verified in polynomial time for shallow programs – programs where all pointers are
“single-level”: that is, where no pointer refers to a value that itself contains a pointer.

6.4 Typestate Surveys

Section 4.2.2 describes two previous papers that report on large quantities of typestate
specifications [4, 18]. We have extended their work by surveying 101 papers that neither of
those works considered and locating all typestates within them, and by identifying which
typestate systems are accumulation typestate systems.

6.5 Practical Typestate Analyses

There have been many attempts to improve the scalability of typestate analyses. We mention
only some of the most recent here. Rapid [21] is a modern typestate analysis built at AWS.
Rapid’s scalability is a design choice: it is intentionally unsound and therefore scales by
not tracking all aliasing. Another recent example is Grapple [72], which uses a novel graph-
reachability algorithm and a modern alias analysis together. Some of Grapple’s optimizations
make it unsound despite access to aliasing information. Because Grapple does track aliasing,
it scales much poorly than accumulation-based systems: for example, Grapple is more
than an order of magnitude slower than an accumulation-based approach to resource-leak
detection [37].
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6.6 Typestate With Aliasing Restrictions
Another method to avoid the need to do an expensive whole-program alias analysis is to limit
the programmer’s use of aliasing. Examples include linear or affine type systems [16, 61], role
analysis [40], ownership types [14, 55], and access permissions [7]. Accumulation analyses,
unlike all of these approaches, do not impose any restrictions on the programming model.

6.7 Other Work on Typestate
Typestate is well-studied in the scientific literature, and there is not space to give a full
survey here. However, our artifact12 mentions all the papers that we examined as part of
our literature survey (Section 4).

7 Conclusion

Soundly checking an accumulation typestate system is significantly cheaper than soundly
checking an arbitrary typestate system because it is not necessary to compute exhaustive
aliasing information. Since the expense of computing exhaustive aliasing information has
been a key barrier for the adoption of sound typestate analyses in practice, we believe that
accumulation analysis is a promising approach for the estimated 41% (Table 1) of typestate
specifications that are actually accumulation typestate specifications. Typestate analysis
designers or users can use our work to check whether their specification is an accumulation
typestate specification, and if it is, they can use an accumulation analysis – gaining an order
of magnitude or more in analysis speed at only a small cost in precision.
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A Proof of Lemma 15

This appendix contains the full proof of Lemma 15, which appears in section 3.3.1.6 and is
used by Lemma 16, the forwards direction of the proof of Theorem 9. We begin by restating
Lemma 15:

▶ Lemma 15. Let R = ϕs(xi) be the set of estimated typestates produced by a typestate
analysis with no aliasing information for a variable xi before a statement s. Let S be the
trace of an arbitrary execution leading up to some occurrence of s, and let t = τ(ρ(xi)) be
the typestate of the actual value to which xi refers before that occurrence of s. Applying S to
the automaton leads to typestate t. There exists a typestate r ∈ R such that applying some
subsequence of S leads to r. That is, there is some estimated typestate r ∈ R that is reachable
by a subsequence of the transitions that lead to t.

The proof is by co-induction on the dynamic semantics of the language in Figure 2 and
the definition of a typestate analysis with no aliasing information in Definition 14, with one
change to its rule for load operations (rule TS-LOAD-FIX in Figure 5). In particular, the
load rule our typestate analysis with no aliasing uses in this proof is the following:
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For a load statement s, where s is xi := xj.fk, let s0 be the start state of the automaton
A which is being checked. The analysis updates its estimate for xi so that it is mapped
to s0: ϕ′

s(xi) := so. For all other names m in ϕs where m ̸= xi, the analysis copies the
entry from the previous abstract store: ϕ′

S(m) := ϕs(m).

(See the discussion of why this modified rule is necessary in section 3.3.1.6, after the
original statement of Lemma 15.)

Proof.
Base case: when a program begins executing, the dynamic semantics say that all names
refer to values in the start state. A typestate analysis with no aliasing information estimates
that at a program’s entry point, all names are in the start state, as well. Trivially, the start
state is reachable by the same sequence of operations as itself.

Case assignment: For an assignment s, where s is xi := xj , the invariant is preserved
by the inductive hypothesis. Consider that by the inductive hypothesis, the invariant is
preserved for xj . Then consider the rule used by the typestate analysis with no aliasing
information for an assignment: every mention of xi in the abstract store is replaced by xj .
Further, the dynamic semantics for an assignment require that the previous value of xi is no
longer accessible via xi: xi after the assignment refers only to xj . Since xi and xj after the
assignment are treated entirely the same, but the abstract store is otherwise unchanged by
the analysis, what was true of xj before the statement is true for xi after.

Case load: The special load rule TS-LOAD-FIX trivially guarantees that the invariant is
preserved: the start state is reachable by a subsequence of the operations that reach any
other state (in particular, by the empty subsequence).

Case store: This rule trivially preserves the invariant, because the invariant must be
maintained only for the estimates for variables – not for fields – and rule TS-STORE only
updates estimates for fields.

Case method call: For a method call s = xi.mj(), only steps 1 and 2 of rule TS-CALL are
applied, because a typestate analysis with no aliasing information never performs strong or
weak updates on possible aliases. The invariant is preserved via the inductive hypothesis: for
xi itself, let r1 be the element of R that is reachable by a subsequence of the actual sequence
S in the inductive hypothesis. The analysis updates its estimate to include r1 + mj (that
is, the sequence r1 followed by the transition mj). After s is executed, the actual sequence
is S + mj , and since we know that r1 is reachable by a subsequence of S, r1 + mj must be
reachable by a subsequence of S + mj – the same subsequence used to reach r1, with mj

added on. For any aliases of xi, the inductive hypothesis also guarantees that the invariant
holds: the estimate contains some r that is a subsequence of S, and any subsequence of S is
also a subsequence of S + mj .

Case sequence: For a sequence, the invariant is trivially preserved by induction. ◀
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